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This paper is the first in a series of investigations having the overall objective of 
developing a new technique for treating the slow viscous motion past finite 
assemblages of particles of arbitrary shape. The new method, termed the multi- 
pole representation technique, is based on the theory that any object conforming 
to a natural co-ordinate system in a particle assemblage can be approximated 
by a truncated series of multi-lobular disturbances in which the accuracy 
of the representation is systematically improved by the addition of higher 
order multipoles. The essential elements of this theory are illustrated by 
examining the flows past finite line arrays of axisymmetric bodies such as 
spheres and spheroids which conform to special natural co-ordinate systems. 
It is demonstrated that this new procedure converges more rapidly and 
is simpler to use than the method of reflexions and represents the desired 
boundaries more precisely than the point-force approximation even when 
the objects are touching one another. Comparison of these solutions with 
the exact solutions of Stimson & Jeffery (1926) for the two sphere problem 
demonstrates the rapidity of convergence of this multipole procedure even when 
the spheres are touching. Drag results are also presented for flows past chains 
containing up to 101 spheres as well as for chains containing up to 15 prolate 
or oblate spheroids. The potential value of the technique is suggested by the 
rapidity with which the drag calculations were made, the 101 sphere problem 
requiring about 10 seconds on an IBM 360-65 computer to determine both the 
fluid flow and the drag coefficient. 

1. Introduction 
The slow motion of an incompressible viscous fluid relative to assemblages of 

submerged particles has long been of interest in the areas of sedimentation, 
flow through packed beds, the study of suspension viscosities, and other appli- 
cations of two-phase flow. A review of the pertinent literature by Happel & 
Brenner (1965) indicates that two approaches - the method of reflexions and 
the point-force approximation - have been used extensively for treating multi- 
particle slow-flow problems. The method of reflexions, developed by Smoluchow- 
ski (1911,1912)andusedbyBurgers (1940))Kynch (1959)andHappel &Brenner 

j- This paper was presented at the International Symposium on Two-Phase Systems, 
29 August-2 September 1971, Teohnion City, Haifa, Israel. 
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(1965), is an iterative approximation technique. For the first reflexion, pertur- 
bations resulting from the velocity field due to one particle being reflected from 
the boundary of a second particle are used to correct the zeroth-order velocity 
field of the second particle calculated in the absence of the first particle. The 
nth-order reflexion is then the correction required to satisfy the no-slip boundary 
conditions at  the surface of each object caused by the disturbance field of the 
(n - 1)th reflexion of all other particles. This technique allows multiple particle 
interaction problems t o  be handled and has been shown to converge to the 
exact solution for the two sphere problem. The convergence characteristics are 
strongly dependent on the ratio of sphere spacing 2d to sphere diameter 2a. 
When this ratio dla is large (i.e. dilute system) a single reflexion describes the 
particle interactions adequately. For concentrated systems (d/a +- 1) higher 
order interaction effects become significant and the leading term in the iterative 
series solution becomes a poor description of particle interaction effects and 
generates a series with very slow convergence characteristics. 

The point-force approximation technique developed by Burgers (1938, 1941, 
1942), and used by McNown & Lin (1952), Tchen (1954), Broersma (1960) and 
Tam (1969), requires that the disturbance produced by a submerged object be 
replaced by one or more point forces located at the foci of the object. This 
technique approximates the exact viscous no-slip boundary condition by re- 
quiring that the velocity over the surface of the sphere vanishes in some average 
sense. This approximate technique has also been used in conjunction with the 
method of reflexions to describe multiple particle interaction problems by 
Burgers (1941, 1942) and Kynch (1959). Since point forces radiate with equal 
intensity in all directions the angular dependence of disturbances on the boun- 
daries of one spherical object in the presence of others cannot be taken into 
account. This angular dependence grows in importance as the angle subtended 
by the test sphere relative to the origins of the other spheres increases. Therefore, 
the accuracy of the point-force representation quickly diminishes as the spheres 
approach one another. 

The techniques described above must in general be used when more than two 
objects are present except for the special case of the flow relative to an infinite 
chain of equally spaced spheres and spheriods along their line of centres. 
Because of the perfect periodicity existing in such an infinite chain this 
latter problem can be viewed as the flow past a single sphere or spheriod in 
a cell with periodic boundary conditions, e.g. Wang & Skalak (1969) and 
Chen & Skalak (1970). The numerous two sphere problems treated in the 
literature form an important class of exact solutions that provide valuable 
insight into the convergence characteristics of the method of reflexions and the 
accuracy of the point-force approximation. These exact solutions all depend on 
mapping the solution for a single sphere into spherical bipolar co-ordinates. This 
technique was first used by Stimson & Jeffery (1926), for two spheres translating 
along their line of centres, and was extended to the asymmetric case by Dean 
& O’Neill (1963). Further extensions of this problem have been reported by 
Goldman, Cox & Brenner (1966), slow motion of two identical arbitrarily oriented 
spheres, and by Davis (1969), translation and rotation of two unequal spheres. 
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The object of the present study is to develop a new technique for handling 
concentrated axisymmetric systems of particles conforming to natural co- 
ordinate systems which is capable of satisfying the no-slip boundary conditions 
more accurately than the point-force approximation technique and which 
also converges more rapidly than the method of reflexions. The new method 
is based on the concept that the disturbance due to each submerged object 
can be represented by an infinite series of multipoles placed at the centre 
of the object, where each multipole series has a different origin. The strength 
of each multipole is determined so as to satisfy the no-slip boundary conditions 
along the surface of all interacting particles simultaneously. To satisfy the 
boundary conditions exactly along a finite surface, multipoles of all orders must 
be retained in the same sense that a complete Fourier series is required to 
represent any well-behaved function over a finite interval. However, since each 
multipole used to  represent a submerged object allows the exact no-slip boundary 
conditions to be satisfied at a point on the generating arc of that object, solutions 
of any order of accuracy can be obtained depending on the order of the multi- 
poles retained in the solution. The technique is, therefore, one of truncation 
rather than an iterative procedure as in the method of reflexions. Furthermore, 
since all particles are treated simultaneously to the same order, the effect of other 
particles is considered even in the lowest order truncation. It will be shown that 
the lowest order truncation solution for the drag on each particle using the new 
technique is considerably more accurate than the first reflexion solution in the 
method of reflexions when the particles are close together and as good a solution 
as the point-force approximation when the particles are far apart. This improve- 
ment in accuracy over the method of reflexions increases as one goes to corres- 
ponding higher order corrections in each method. 

The multipole representation technique can be used to describe the motion 
past any number of spherical objects by placing a multipole series a t  the focal 
point of each sphere. This reasoning is easily extended to oblate and prolate 
spheroids. The characteristic length between foci is then used to stretch or 
compress the lobes of each multipole originating from the geometrical centre of 
each spheroid. In  principle, an arbitrary axisymmetric object can be represented 
by a continuous distribution of spheroidal co-ordinate multipoles of vanishing 
aspect ratio. From a practical point of view a good approximation to flow past 
complex shapes can be obtained using other objects, e.g. a long cylinder is 
well approximated by a string of prolate spheroids placed end to end. The 
present paper is restricted to the axisymmetric flow past spheres and spheroids 
in order to demonstrate the simplicity and utility of the multipole approach. 
A second paper treating arbitrary axisymmetric flow configurations is to 
appear separately. The technique is also currently being extended to non- 
axisymmetric problems. 

In  $ 2  the problem of flow past multiple spheres utilizing the multipole tech- 
nique is formulated. Solutions for flow past two spheres are compared with the 
exact results of Stimson & Jeffery (1926) in 53 and solutions to flow past any 
finite number of equally spaced spheres are discussed in $4. Section 5 contains 
the formulation of the problem of flow past a number of submerged bifocal 
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objects in terms of multipoles. Results for multiple prolate and oblate spheroids 
are presented in $0 6 and 7 respectively. 

2. Formulation for multiple spheres 
In this section, a general description and discussion of the multipole repre- 

sentation technique will be presented and applied to a general solution for slow 
viscous incompressible flow past a finite chain of equally spaced spheres. 

By omitting the inertial terms, pv .Vv, the steady-state Navier-Stokes equa- 
tions reduce to the well-known creeping motion or Stokes equations, i.e. 

v2v = (1/p) vp. (2.1) 

To obtain an equation in a single dependent variable one introduces the stream 
function, defined in spherical co-ordinates as 

and takes the curl of (2.1) which results in the GASP equation 

V2(V2$) = 0, (2.3) 

where V2 is the slow motion Stokesian operator 

and 6 = case. 

V2$ = 2w. 

The stream function $ is related to the vorticity w as follows: 

The general solution to (2.3), presented by Sampson (1891), Savic (1953) and 
Haberman & Sayre (1958), is based on the linearity of (2.3) and contains two 
basic summations 

where $1 contains the irrotational solutions V2$-, = 0 and $2 contains the 
rotational solutions V2$, = 2 w ;  

m 

$ = C [A,  rn + B, r-,+l + Cn rn+2 + D, r-n+3] I, (5)  
n=O 

00 

+ C [A6rn+B:,r-n+l+C6rn+2+D' n r-n+3 IHn(5)9 (2.4) 

where the terms Anrn, B,r-,+l, A6rn and B;r-"+l belong to and the terms 
Cnrn+2, Dnr-n+3, C2rn+2 and Dhr-n+3 belong to $2. Here I,(c) and H,(Y) are 
Gegenbauer functions of the first and second kind respectively, related to 
Legendre functions as follows: 

n=2 

In(<) = [Pn-2(fj)-Pn(5)1/(2n-l) for n 2 2 ,  
for n 2 2 ,  H n  (5)  = "2,-2 (6) - Qn (5)1/(2n- 1) 

where Io(5) = 1, 4 ( 5 )  = -5, HO(5) = -5,  Hl(!3 = - 1 .  
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The condition of uniform flow at infinity in the direction of the negative z 
axis requires that 

This condition plus the fact that the functions of the second kind (H, (5) )  become 
infinite along the axis 5 = i 1 results in the following evaluation of some of the 
constants in (2.4): 

(2-6) 

+r+Ur2sin2B as r+co. (2.5) 

I C n = A; = B:, = Ck = Dk = 0 

A , =  U ,  A,=O for 3 < n < o o .  

for all n, 

Application of (2.5) and (2.6) to (2.4) results in the following general form for the 
stream function in spherical co-ordinates: 

m 

n=2 
$ = 4 Urz sin2 0 + [B, r-,+l+ D, r-n+3] 1% (5).  (2-7) 

Sampson has shown that for flow past a single perfect sphere 

B,= D , = O  for n >  2; 

11. = &Ur2sinaB+ 4 s h 2 B  [B2/r + D2r]. 

Finally, B2 and D2 are determined by applying the no-slip boundary conditions 
to equations (2.2) evaluated at r = a. 

The force exerted by the fluid on a spherical boundary r = constant is shown 
in Happel & Brenner (1965) to be 

(2.7) therefore reduces to the well-known single sphere result 

Performing this integration on (2.7) and making use of the orthogonality of the 
Gegenbauer functions I, (C), i.e. 

for m $. n 
1) (2%- l)] for m = n, 

j +l I;, (5 )  I n  (5 )  d l  = 
-1 1 - 5 2  

results in F = 4npD2, (2.8) 
i.e. the drag on a single sphere is represented by the leading term in the infinite 
series solution for the rotational part of the flow. Equation (2.8) is an analogous 
result to that found by Wang & Skalak (1969) and Chen & Skalak (1970). 

It is possible to extend Sampson’s results for flow past a single sphere to the 
case of flow past any finite number of equally spaced spheres along their line of 
centres. The geometry of the system being considered is shown in figure 1. 
From the linearity of the governing equation of motion (2.3) it  is possible to 
write the solution for the stream function for flow past N spheres as follows 

& N - U  + =  C +i for Nodd, (2.9a) 
j = - $ ( N - l )  

where the origin is taken on the centre sphere for convenience. For N even the 
origin is taken on the sphere closest to the centre of the chain, i.e. 

(2.9b) 
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W 

$j = +Ur;sin28,+ [Bnjr?n+l+D,jr;n+3] In(&). (2.10) 
n=2 

Here r j  and cj are measured from the origin of each sphere considered separately. 
Combining (2.9) and (2.10) yields the following solution for the stream function 
for flow N spheres 

In order to apply (2.11), the r j  and Q terms must be written in terms of a single 
co-ordinate system, i.e. 

r j  = [(~-2jd)2+y2]t 

[j = ( ~ - 2 j d ) / ~ i - $ ( N - l )  < j  ,< i(N-I).  
V 

j = - 2  j = - ]  j = o  j =  1 j = 2  

FIQURE 1. Geometry of the multiple sphere system. 

Examination of the complete expression for the stream function (2.11) 
indicates that a double series expansion which is infinite in one dimension and 
can be large in the other dimension is required to represent the exact solution. 
The basic problem is to determine the constants in this two-dimensional series 
expansion so as to satisfy the no-slip viscous boundary conditions along the 
surfaces of all spheres considered simultaneously. A better insight into the flow 
representation of (2.11) can be had by examining the Gegenbauer functions of 
the first kind, i.e. 1, (6). Figure 2 demonstrates the form taken by I2 (cos 0) to 
1; (cos 0). It can be seen from this figure that Gegenbauer functions of the first 
kind represent, conceptually, disturbances emanating from a single focal point. 
These disturbances are symmetrical about both axes and increase in complexity 
as the order of the Gegenbauer function increases. In  general In (Cj) represents 
a disturbance which will have 2n - 2 lobes distributed symmetrica.lly about the 
x axis. The term multipole has been coined to describe a single term in the 
inner series in (2.11). Thus each multipole has associated with it two constants 
Bnj and D n j  which are related to the intensity of the multipoles. These multi- 
poles are somewhat akin to the Burgers point forces in that they represent 
disturbances radiating from a single focal point. They differ from point forces 
in that their intensity varies as a function of the polar angle 8,. 
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Further examination of these multipoles in the context in which they appear 
in (2.1 1) leads to certain rather interesting conclusions. Each compound term 
or multipole in the inner series expansion for the solution for the stream function 
contains two constants operating on I,, (&). Now, for flow past spherical objects 
the no-slip boundary conditions on 

A Y  

the surface of each object result in two 

- I t  

equations for each discrete point on the semicircular arc of radius a that revolves 
about the x axis to form the sphere, i.e. at  r j  = a and Oi = 8, 

(2.12) 

The two arbitrary constants in each multipole thus provide the freedom to 
satisfy the boundary conditions (2.12) at one point along the generating arc of 
each sphere. If the boundary conditions are to be satisfied over the entire surface 
of each sphere (i.e. at an infinite number of points on the generating arc) an 
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infinite number of terms of multipoles would be required to represent the dis- 
turbance due to each submerged sphere. 

The question of greatest practical importance is how many multipoles are 
required to represent each sphere in the chain to produce a result having the 
desired accuracy. The answer to this question is complex and will be the object 
of careful examination in subsequent sections where detailed comparisons with 
the known exact solution for two spheres are presented. One anticipates that the 
constants in each multipole will be a function of the dimensionless spacing d/a 
and that in.the limit d/a-+cc all the higher order coefficients should become 
vanishingly small. This must occur if the multipole representation (2.11) is to 
reduce to the exact solution for a single sphere. The principle of series truncation 
described above has been employed for problems involving flows relative to 
single objects, i.e. O'Brien (1968), as well as flows relative to infinite chains of 
objects, where the boundary-value problem is that of a single periodic cell, i.e. 
Wang & Skalak (1969) and Chen & Skalak (1970). It has not, however, been 
investigated as a rational numerical procedure for problems involving flow 
relative to finite chains of objects. 

Returning to the equation for the stream function (2.11) and using the boun- 
dary conditions (2.12) we shall now present in general form the solution to the 
problem of axisymmetric flow past an arbitrary number of equally spaced spherical 
objects. If a system of N spheres is spaced evenly along the x axis as depicted in 
figure 1 and the boundary conditions are satisfied at M points along the generating 
arc of each of the N spheres, then a set of 2 x N x M homogeneous simultaneous 
linear algebraic equations results for the 2 x N x M unknown constants Bnj and 
Dnj .  The general solution for all the required constants in (2.11) can be repre- 
sented as follows. Using (2.2), (2.11), (2.12) and the differential form for In(C), i.e. 

41, (C))/dC = - P,-1(5), 
it  can be shown that 

where, for 1 < m < N ,  

Aj,, = - U C O S ~ ~ ~ ,  
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Equation (2.13), when written in matrix form, becomes 

- 4 1  

- 4 2  

- 4 , M  

-A;,l 
- 4 2  

-AR,m 

B2, 1 
D2,l 

DM+l,@N-i 

4, gN+1) 
0 2 ,  &V+u 

DM+l, N 

- 

This linear set of simultaneous algebraic equations can be solved by any of the 
standard matrix reduction techniques (such as the Crout method) to yield the 
B,, and D,, constants required in equation (2.11) for the stream function. 

The drag force exerted by the fluid on each sphere in the array can be deter- 

(2.15) 

Performing the above integration and using the orthogonality properties of the 
Gegenbauer functions results in the simple relationship 

Fj = 47~pD2, j. (2.16) 

Equation (2.16) demonstrates, just as for the case of a single sphere, that only 
the first multipole contributes to the drag forces exerted on each submerged 
sphere. While the integral (2.15) is performed along the surface of the sphere 
holding r1 constant the result (2.16) can be easily generalized to any surface 
drawn in the fluid which encloses the origin of the same multipoles, see Chen & 
Skalak (1970). Since the stress distribution in Stokes flow is an equilibrium 
field the forces on two closed surfaces which contain no singularities in the 
region between them will be the same. Thus, the fact that the truncation pro- 
cedure provides only an approximation to the actual boundary shape does not 
affect the drag result if the value of D2, is unchanged. 

3. Solutions for two spheres 
Solutions using the multipole representation technique to axisymmetric slow 

viscous flow past two spheres along their line of centres will be presented in this 
section. This two sphere problem was chosen since the exact solutions presented 
by Stimson & Jeffery (1926) provide a convenient means for evaluating the 
truncated multipole representation technique. The solutions for the flow past 
submerged objects can be presented graphically by plotting streamline patterns 
and also by calculating the drag force on each object. 

Happel & Brenner (1965) describe a convenient coefficient for comparing the 
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drag on a sphere in an array to the drag on a single sphere. The well-known Stokes 
result for the drag force on a single sphere is 

F = 67rpUa. (3.1) 

Fj = 67rpUahj, (3.2) 

Based on (3.1), h is defined as follows: 

where j represents the particular sphere in the chain (see figure 1). Referring 
back to (2.16), we recall that the drag force exerted on a submerged sphere is 
represented by Fi = 47rpDzj. Combining (2.16) and (3.2) produces 

hi = Dzj/1.5 Ua. (3.3) 

In  all of the two sphere problems considered herein the sphere radius and the 
free-stream velocity U have been normalized to unity. Also for the case of two 
spheres, the drag forces on each of the spheres are equal owing to symmetry 
and therefore the subscript .j will be dropped from A ,  i.e. for two spheres 

h = 0,/1.5.  (3.4) 

In  writing a program to determine the Bnj and Dnj constants in (2.11) some 
practical hints gleaned from the experience of the authors should prove to be 
useful. The no-slip boundary conditions presented in the previous section are 
represented by qj = o = a+laei, 

J&. = 0 = 

Differentiation of the stream function with respect to each sphere individually 
is tedious as there is a different origin for each sphere and each ri and Oi is a 
function of all the other r j ’ s  and 13~’s. For this reason it is simpler to use a rect- 
angular co-ordinate system which has common co-ordinates for each sphere. 
The velocities qj and Gi are orthogonal and in the same plane. Therefore all 
other velocities originating from the same point as and Gi and in the same 
plane must be zero. In  particular, V,  and V, must be identically zero. A simpler 
set of boundary conditions, equivalent to the above, would therefore be 

Second, when specifying the number of points along the boundary of each 
sphere where the conditions (3.5) must be exactly satisfied it is desirable to 
specify an odd number of points. The reason for this is as follows. The first point 
that should be specified should always be the highest point on the generating 
arc (i.e. the point ri = a, Or = in). This point is most advantageous as the drag 
on the sphere is a strong function of the projected area of the sphere normal to 
the direction of flow and the above mentioned point provides the best single 
estimate of this projected area. The argument is valid for all low aspect ratio 
objects, e.g. the drag on a flat disk is only 15.2 % lower than the drag on a sphere 
of the same diameter. If more points along the generating arc are to be specified, 
they should occur as mirror image pairs about the line Bi = &r in order to satisfy 
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the geometric symmetry of the boundary about this line. The particular tech- 
nique used by the authors for spacing these points along each boundary was to 
divide the half arc of the sphere into equal segments. Using this simple procedure 
it was found that convergence was rapidly attained in all cases examined. For 
this reason it was decided that the development of an algorithm for selecting the 
boundary points more efficiently would not be required. 

A practical difficulty arises from the specification of the first point, i.e. # = 0 
or S = 4.. Referring to equations (2.2) and (2.11), qJ can be represented as 
follows 

(3.6) v , ~  = - U C O S S ~ + ~ S  [~,~~;*-1+~,~ri*+1]  P,-~(coss,). 
J n  

It can be seen that if Sj = &r the trivial solution of 0 = 0 will result when = 2, 
as Pl (cos Sj) = COB 0,. Thus, one of the algebraic equations in the set (2.14) is lost, 
with the result that one of the elements of the principal diagonal will be equal to 
zero thereby rendering a solution impossible. In order to overcome this diffi- 
culty, the top point can be considered to be a combination of two points that 
are very close together, i.e. # = +a. The technique used for choosing a is to 
solve a number of problems in which the boundary conditions are exactly 
satisfied at  the two points # = ? a on each sphere only and noting the largest 
value of a for which convergence to a prescribed accuracy is obtained. These 
results are presented in table 1. Examination of table 1 indicates that h con- 

Number of 
points, M 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

Spacing, dla 6 
1 10" 
1 5" 
1 3" 
1 2O 
1 1" 
1 0.1" 

2 10" 
2 5" 
2 3" 
2 2" 
2 1" 
2 0.1" 

4 1 0" 
4 5O 
4 no 
4 2" 
4 lo 
4 0.1" 
8 10" 
8 5O 
8 3" 
8 2" 
8 l o  
8 0.1" 

TABLE 1. Convergence trials for choosing 6 for two spheres 

h 
0.65994 
0.66113 
0.66139 
0.66147 
0.66152 
0.66152 

0.74991 
0-75047 
0.75059 
0-75062 
0.75065 
0.75065 

0.84587 
0.84599 
0.84602 
0.84603 
0.84604 
0.84604 

0.9 148 1 
0.91483 
0.91483 
0.81483 
0.91483 
0.91483 
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verges to five significant figures for all sphere spacings where la1 6 1". Therefore, 
in all subsequent multiple sphere problems presented in this study q5 was taken 
as 1" for the first two points and these two points were considered to be the single 
high point required. 

A fundamental question that remains unanswered a t  this point is how many 
multipoles (or at  how many points on the generating arc at  which the no-slip 
condition is exactly satisfied) are required for each sphere in order that a solu- 
tion of prescribed accuracy will result. The accuracy of the truncation is prin- 
cipally a function of dla. Thus, the convergence characteristics of the two 
sphere problem were examined over the entire range of spacings, i.e. 1 6 dla < co. 
This problem was handled using the multipole technique satisfying the no-slip 
boundary condition at varying numbers of points along the generating arc of 
each sphere. The drag results are shown in table 2. 

Number of 
points, M 

1 
3 
5 
7 
9 

11 

1 
3 
5 
7 

1 
3 
5 
7 

1 
3 
5 
7 

1 
3 
5 

1 
3 
5 

Spacing, dla 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 

8 
8 
8 

I6 
16 
16 

h 
0.66152 
0.6441 1 
0,64487 
0.64514 
0.645 15 
0.64515 

0.75065 
0.74244 
0.74226 
0.74226 

0.80851 
0.80477 
0.80472 
0.80472 

0.84604 
0.84414 
0.84412 
0.8441 2 

0.9 1484 
0-91454 
0.91454 

0-95530 
0.95525 
0.95525 

TABLE 2. Approach to the exact solution for flow past two spheres 

A number of interesting conclusions can be drawn based on the above data. 
In the most difficult case (i.e. spheres touching) convergence to five significant 
figures is obtained when the boundary conditions are satisfied at  nine equally 
spaced points on each generating arc. This rapid convergence for the case of 
two spheres touching is in dramatic contrast t o  the results of applying the 
method of reflexions to this same problem. Faxen (1935) (with an appendix by 
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Dahl) carried computations based on the method of reflexions to the ninth 
power and obtained an equation for A. Happel & Brenner (1965) employed an 
empirical procedure based on the assumption that the last terms in Dahl’s 
expression represent a slowly converging geometric series and obtained the 
following expression for h : 

(3.7) 

Numerical values for a, are listed by Happel & Brenner (1965). When (a/d) = 1, 
A calculated from (3.7) is 0.48, representing an error of 25-6 %. Happel & Brenner 
then assumed that for terms in h in (3.7) corresponding to n > 9, 

a, = constant = +, 

Y 

&=o 
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&b= 0 . t  

M= 9 
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(b) 
FIGURE 3. Zero streamlines as a function of sphere spacing and number of boundary 

points M .  d/a = 1, 3 for (a) and ( b )  respectively. 

They then carried the summation in (3.7) to infinity and obtained a h of 0.647 
representing an error of 0.31 yo. It should be noted that the maximum error 
resulting from the application of the multipole technique to two touching spheres 
is 2-5 yo when only one point on each generating arc is used. This greatly improved 
accuracy occurs because the truncation procedure involves simultaneous inter- 
actions, even when the lowest order truncation is used. Table 2 indicates that, 
for each case of two touching spheres convergence to five significant figures is 
obtained when the boundary conditions are satisfied at nine points along the 
generating arc of each sphere. For all other cases where d/a 2 2, convergence 
was attained when only five points on each generating arc were used to satisfy 
the no-slip condition. It is obvious that for any sphere spacing, convergence 
increases rapidly with increasing numbers of points. 

The streamline patterns in figure 3 indicate certain interesting features. 
For the case where the two spheres are touching and only one point on each 
generating arc is used to satisfy the no-slip condition it can be seen that the 
actual solid boundary (represented by the zero streamline) is grossly distorted 
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from the desired spherical shapes (represented by the broken lines). However, 
the distorted boundary has the same projected area normal to the direction of 
flow as the true spherical boundary. This accounts for the fact that the drag on 
the grossly distorted boundary is only 2.5% different from the drag on two 
perfect spheres. This important feature indicates that if drag results are desired, 
satisfying the boundary conditions at only one point on the generating arc of 
each sphere will result in a maximum error of 2.5 % whereas if velocity fields are 
required, a larger number of points on each boundary must be used to eliminate 
large errors. 

Number of 
Spacing, dla points, M A A exact 

1-1276260 1 0.67493 0.65963 
3 0-65932 - 
5 0.65946 - 
7 0.65961 - 
9 0.65963 - 

3 0.70272 - 
5 0.70245 - 
7 0.70245 - 

3 0.76789 - 
5 0.76778 - 
7 0.76778 - 

3 0.83822 - 
5 0.83620 - 

7 0.83620 - 

1.5430806 1 0.7 143 1 0.70245 

0.7 7408 0.76778 233524096 1 

3.7621957 1 0.83843 0.83620 

6.1322895 1 0.89221 0.89158 
3 0.89159 - 

5 0.89158 - 

7 0.89158 - 

3 0.93079 - 
5 0-93079 - 

10.067662 1 0-93096 0.93079 

TABLE 3. Comparison of two sphere solutions with exact results of 
Stimson & Jeffery 

It has been demonstrated that rapid convergence to a solution is possible for 
all sphere spacings using the new multipole representation technique. The 
question yet to be answered is whether the solution obtained actually represents 
the true solution. To this end, a number of solutions to the two sphere problem 
at various spacings using the multipole technique are compared with the exact 
solutions of Stimson & Jeffery (1926) in table 3. 

These data demonstrate that the solution obtained on convergence using the 
multipole technique is in fact the exact solution as obtained by Stimson & 
Jeffery. It is of interest to note that the problem of two touching spheres dla = 1 
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represents a degenerate case of the exact solution presented by Stimson & 
Jeffery, i.e. 

4 sinh2 (n + &) a- (2n+ 1)2 
As, = #sinha Z 

where a is defined by cosha = d/a. 
Faxen (1927) developed an integral technique for treating the limiting case 

of equation (3.8) when d/a = 1. The result of applying Faxen’s method to the 
problem of two touching spheres is reported by Goldman, Cox & Brenner (1966) 
as A,, = 0.6451408. This result is in fairly close agreement with the equivalent 
converged solution for h calculated by the multipole technique and reported in 
table 2, i.e. h = 0-64515. 

4. Solutions for multiple spheres 
In the previous section solutions for the axisymmetric flow past two spheres 

based on the multipole truncation technique have been presented and were 
shown to be in agreement with the exact solutions presented by other workers. 
This section will examine the solutions of the problem of axisymmetric flow 
past finite chains of spheres. To the best of the authors’ knowledge exact solu- 
tions for finite chains of three or more spheres do not exist in the literature. 
This is due to the fact that for assemblages of more than three settling spheres, 
orientations other than sedimentation along the line of centres appear to repre- 
sent more stable configurations. Slack & Matthews (1961) have shown experi- 
mentally that clusters containing no more than six spheres will tend to arrange 
themselves in the same horizontal plane at the vertices of a regular polygon. 
The purpose of considering linear chains of more than three spheres is to demon- 
strate the application and convergence characteristics of this new technique 
for systems containing three or more spheres rather than to infer that such 
chains represent stable settling configurations. 

Solutions to flow past chains containing 3, 5, 7, 9, 11, 13, 15 and 101 equally 
spaced spheres where the boundary conditions are satisfied at  one or more 
points on each generating arc have been obtained. The results of the preceding 
section for two spheres provide a qualitative guide to the accuracy of these 
solutions. The maximum error to be expected in hi (when the spheres are 
touching and the boundary conditions are satisfied a t  only the B j  = 8.n point 
on the generating arc) will be approximately 24%. The maximum error will 
be greatly reduced if more than one point is chosen, e.g. for three points on 
each generating arc the probable error when the spheres are touching will be 
0.16 yo. 

In  order to handle the 15 sphere problem utilizing only the two lowest order 
multipoles, 60 linear simultaneous equations need to be solved as the uppermost 
point is actually two points 4 = & 1’ and this involves four velocity boundary 
conditions for each sphere. Although this is accomplished very rapidly with the 
use of a computer the storage capacity required is rather high. In  order to 
increase the number of spheres from 15 to say 101 it is necessary for 404 simultan- 
eous equations to be solved. This is not difficult but requires the use of complex 
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overlaying techniques to accommodate the entire coefficient matrix in core 
(i.e. 163216 words of storage or 652 864 bytes are required). 

The drag correction factor hj  was determined for chains containing various 
numbers of spheres at  different sphere spacings in the range 1 < dla < 16, 
with the boundary conditions satisfied at both one and three points on each 
generating arc. The resuIts for d/a = 2 are plotted in figure 4. The values for hi 
for the central spheres in a 101 sphere chain are also shown. It is estimated that 
the error in hi where the boundary conditions are satisfied at one point on each 

1.0 

0.9 

0.8 

t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 1 - 6 - 5 - 4 - 3 - 2 - 1  0 1 2 3 4 5 6 7 

Sphere number ( j )  

FIGURE 4. Drag coefficient factor A, for chains containing different numbcrs of spheres 
with dla = 2. 

generating arc will be approximately 1.1 yo based on the results of the previous 
section. Although the drag correction factor h j  has a discrete value for each 
object the values have been connected by solid lines to indicate each individual 
chain. It can be seen that as the chain length is increased the drag on the central 
sphere decreases indicating a shielding effect. As the ends of any chain are 
approached the relative drag on adjacent spheres changes rapidly, demon- 
strating the importance of end effects. As the length of the chain increases, the 
drag on the spheres located in the central portion of the chain changes very 
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slowly. In  the limit of an infinite chain the drag on each sphere would be the 
same. 

The broken lines indicate the drag on the nth sphere in any chain. It can be 
seen that as the chain length increases, the broken lines tend to become hori- 
zontal, once again demonstrating the relatively strong shielding characteristics 
exhibited by a chain of spheres. 

1 .0 

0.9 

0,s 
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0.5 
A, 
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I I I I I I 1 

4 0  
a3 

I I I I I I I 

7 -3 -7 - 1  0 1 - 3 
Sphere number ( j )  

FIGURE 5. Drag correction factor for a seven sphere chain at different sphere spacings. 

All the above results apply only to a spacing (dja) of 2. In  order to determine 
the effect of sphere spacing on A,, curves of A j  21s. sphere number with d/a as a 
parameter were plotted for a chain of 7 spheres in figure 5. These results demon- 
strate that as the spacing increases the end effects will decrease. Also, as the 
spheres get closer together the drag on each sphere in the chain will be reduced. 
In $56 and 7 the drag on multiple prolate and oblate spheroids in a chain will 
be compared with these results for multiple spheres. 

Figure 6 represents plots of the drag correction factor A, versus the sphere 
number in a chain containing 101 spheres a t  spacings (dja) of 1, 2 and 4. For all 
cases the boundary conditions were satisfied at  one point (8, = in) on each 

46 FLhl 50 
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sphere with probable errors of 24 yo for the case of d/a = 1 and 0.2 yo for d/a = 4. 
This figure indicates that the drag on all the spheres in the central section of the 
chain changes very little with position, However, it is interesting to note the 
extent of the end effects exhibited by long finite chains as shown in figure 6. 

Finally, if equations (2.11) and (3.3) are used to determine the drag on each 
sphere in a chain of infinite extent in an unbounded fluid (using the property of 
perfect periodicity, i.e. B,, = B, and D,, = D,), it is found that A, approaches 
zero as the number of spheres in the chain becomes very large. This paradoxical 
result is in contrast to the results of Wang & Skalak (1969), who considered the 
case of an infinite chain of spheres moving along the axis of a circular cylinder. 

0.5 

0.4 

4 
0.3 

0.2 

d/n = 4 

d/a = 2 

d/n= 1 

t 1 
0 ' ~ " ~ ' " " " " ' " " " " ' ~  

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 

sphere number 

FIGURE 6. Drag correction factor for 8, 101 sphere chain at different sphere spacings. 

These workers found that for the case of an infinite chain of touching spheres 
having a ratio of sphere diameter to cylinder diameter of 0.1, the correction to 
the Stokes drag would be 0.473. This zero drag is in accord with Burgers approxi- 
mate formula for calculating the drag force per unit length on long cylinders: 

(4.1) F / h  = 27r,uU/(In (I+,) - 0*72), 

where h = cylinder length, r, = cylinder radius. It can be seen from (4.1) that 
as h tends to infinity the drag force per unit length on the cylinder approaches 
zero. 

5. Formulation for bifocal objects 
In  this section the formulation of a general solution for creeping motion past 

a finite chain of equally spaced bifocal objects will be presented. An important 
class of objects in this category are prolate (ovary) spheroids and oblate (plane- 
tary) spheroids. (It should be kept in mind that oblate spheroids are only bifocal 
in a meridian plane as the locus of their foci form a circular ring about their 
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minor axis.) The formulation of the general solution in spheroidal co-ordinates 
of the creeping motion equations (2 .1 )  has been presented by Sampson (1891):  

II. = 2czu1, (P) 1 2  (q )  + [DZP + B2Hz ((PI + D4H4 (2111 4 (a) 
+ [D3 + B3 H3 (P) + D,  H6 (P) l  13  (q) 

m 

+ 2 LDnHn-2 t ~ )  +BnHn (P) + D ~ + , H ~ + ~ ( P ) I  I;, (q), ( 5 . 1 )  
n = 4  

where U = free-stream velocity, D,, B, = constants, 1, (q) ,  H, ( p )  = Gegenbauer 
functions of the first and second kind respectively defined in $ 2 .  The p and q 
are related to the appropriate bifocal co-ordinate transformations (also see 
figure 7). For prolate spheroids the co-ordinate transformation used is 

x+iy = ccosh([+iq), 

x = ccoshgcosq, 

p = wshg = (RI+R,)/2c, 
R1 = [ ( X - C ) ~ + Y ~ ] ~ ,  

x2/a2 + y2/b2 = 1, 

y = csinhgsinq, 

q = C O S ~  = (R2- R , ) / ~ c ,  
R, = [ ( X + C ) ~ + Y ~ ] + ,  

c2 = a2 - b2, 

while for oblate spheroids the co-ordinate transformation used is 

p = isinh6 = i[((Rl+R,)/2c)2- l]*, 

x+iy  = csinh(g+iq), 

x = csinhgcosq, y = ccoshtsinq, 

xz/a2 + y2/b2 = 1 ,  

It can be shown that the first term in (5 .1)  represents the free-stream contri- 

q = cosq = [ ~ - ( ( R , - R , ) / ~ C ) ~ ] ~ ,  (5.3) I R1 = [x' + ( y  - c)~]*, R, = [x2 + ( y  + c)~]+, 
c2 = be - a2. 

bution to the stream function, 

2C2UI2 ( p )  I2 (4)  = iUy2. 

Sampson applied (5 .1 )  to the problem of flow past a single spheroid and showed 
that the following results must be true to produce finite velocities in the far 
flow field: 

The remaining constants B, and D, are determined by applying the no-slip 
boundary conditions 

B, = B4 = B, = ... = B, = D, = D, = ... D, = 0. (5.4) 

V, = 0 = a$/aq, V, = 0 = a$/ap, on p = p,, (5.5) 

where p ,  is the surface of the spheroid. Equation (5.1) subject to (5.4) and (5.5) 
reduces to the solution for the flow past a single spheroid, 

The above solution for a single spheroid is the same as that proposed by Payne 
& Pel1 (1960) and Happel and Brenner (1965) .  

46-2 
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In  order to extend Sampson's results for flow past a single spheroid to the 
case of multiple spheroids the linearity of the equation of motion is used, 

where $r is represented by (5.1). Figure 7 shows the geometry of the system. 

P 

j = - I  j =  1 

j e - 1  j = O  j =  1 

(b) 

FIGURE 7. Geometry of multiple prolate (a) and oblate (b)  spheroidal systems. 

Applying (5.6) to (5.1) one obtains the general form of the solution for the 
stream function for flow past N spheroids. 

m 

where p j  and qr are defined using (5.2) and (5.3) for each spheroid. For prolate 
spheroids 

Pj = (Rlj+R2j)/2ct qj = (Rzj-Rlj)/2G 

and Rlj = [(z - c - 2 j ~ I ) ~  + y2]*, R2, = [(z + c - 2jd)2+ @I*. 
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As for the case of multiple spheres, (5.7) contains a double series expansion 
which is infinite in one dimension and can be large in the other. Examination of 
(5.7) indicates that the multipole truncation technique describedin 0 2 for multiple 
spheres is equally valid and readily applied to multiple spheroids. Each term in 
the inner summation can be interpreted as a multi-lobular disturbance emanating 
from the geometric centre of the spheroid with its amplitude related to the Bnj 

+ 
2 

FIGURE 8. Effect of lobe stretching and compression on I,(cos 7). 

and Dnj coefficients and its angular dependence given by the Gegenbauer func- 
tion I, (p,). The multi-lobular function I,(cos~/,) differs from the I,(cos Sj) used 
in (2.11) for describing spheres in that the angular co-ordinate 0, allows the 
lobes of the Gegenbauer functions to conform to natural spherical co-ordinates 
whereas the qj  co-ordinate stretches or compresses the lobes so as to conform to 
natural spheroidal co-ordinates. This transformation from B j  to 7, is shown in 
figure 8 for the function I2 (cos 7) for aspect ratios a/b of 5.0, 1-0 and 0.2. It can 
be seen that for a/b = 1.0, 12(c0s7/) = I,(cosB), i.e. the case of a perfect; sphere. 
As the aspect ratio increases above 1.0 an elongation in the x direction occurs 
and the lobes conform to prolate spheroids. For aspect ratios less than 1.0 com- 
pression in the z direction provides lobes that conform to oblate spheroidal 
cross-sections. Similar results are obtained for the higher order Ia(qj) and 
represent a stretching of the diagrams shown in figure 2. All the theory developed 
in $2 concerning the use of the multipole truncation technique for flow past 
spheres can be applied to the flow past spheroids. Each multipole contains two 
arbitrary constants Bnj and Dn, and thus provides freedom to satisfy the no- 
slip boundary conditions at one point along the generating arc of each spheroid. 



Kjm = 0 = A;,+ C ~[DB,s,mD2,s+B~,s,~,B2,sI 
s=l  

M + l  

+ [Dj,s,mD3,s + G,s,m&, sI + X EDk,s,mDn,s + Bk,s ,mBn,sI} ,  
N n=4 

G , j m =  0 = A;,+ X {[D~,s,rnD,s+Bi,s,,,B,sI 
s=l  

d l  + 1 

+ [D~,s ,mD,s+B~,s ,mB,sI  + C [D~,s,mDn,s+B~,. ,mB,,sI},  

(5 .8b )  

) (5.8a) 

where M is the total number of points on each generating arc where the no-slip 
boundary conditions are to be satisfied. 

It can be seen that ( 5 . 8 ~ )  and (5.8b) are the equivalent equations in spheroidal 
co-ordinates to (2.13a) and (2.13b) in spherical co-ordinates. Therefore, the 
solution to sIow viscous flow past N submerged spheroids where the boundary 
conditions are satisfied a t  M points on each generating arc is represented ex- 
plicitly by the matrix equation (2.14) where each element is given by (5.8b). 

It is of interest to note that (5.7) reduces to the solution for flow past equally 
spaced multiple spheres as the distance between the foci of the spheroids 
approaches zero. The proof will be outlined for the case of prolate spheroids 
(p i  = cosh&) with the free-stream contribution in (5 .7 )  represented as 

$ Uri sin2 8,. 

A similar proof could be presented for the case of oblate spheroids. Consider the 
repeating term in (5 .7)  

R n j  = DnjHn-2 +BnjHn + Dn+2, jHn+2 (~j). 
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Using the recurrence relationship 

Hn+2 ( ~ j )  = (@! -en)/Jn) Hn (p i )  - ( tn / Jn )  Hn-2 @ j ) ,  

= 61 = 0, where cn = (n-2) (n-3)/(2%- 1 )  (2n-3) ,  
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8, = (n+l ) (n+2) / (2n- l ) (2n+l) ,  E ,  = (2n2-2n-3)/(2n+1)(2n-3), 

results in Rnj = EnjHn-s(~j )  + F n j H n ( ~ j )  +Gnjp;Hn(pj), (5.9) 

where Enj = Dnj-(tn/8n)Dn+2,j, 

Fnj = Bnj - (Gnian) Dn+2, j? 

Gn j = Dn+2. j/Jn* 

As r j  = [ (x - 2jd)2 + y2]1 it is simple to show that as c + 0, pi  -+ rj /c ,  i.e. 

*n ( ~ j )  + Hn (rj/c)* 

For large values of the argument the asymptotic behaviour of Gegenbauer 
functions of the second kind can be deduced from their relationship to the 
hypergeometric function, 

Hn(p) = 2-n((n-2)! n*/(n-i)!)p-n+lF[#n- l),in,n-+, @ 7 ] ,  

i.e. H, (r j /c)  -+ Nn (r,/c)-n+l as c -+ 0, 

since P[i(n - l ) ,  in,  n - 3, ( p - 2 ) ]  + 1 as c-+ 0, 

where Mn is a constant and can therefore be combined with c to produce 

Hn(rj/c)+Mkr,n+l as c+O. (5.10) 

Combining (5.10) with (5.9) results in 

Rnj+Ekjr;n+3+F' n3 rrn+l 3 as c+O. 

Using this result with (5.10) in (5.7) produces 

4 = +Ur~sin20,+~{[D&rS+ B.&712(qj) + [D&+B&rF21&((qj) 

m 

n=4 

f 

+ 2 [Ekjr;n+3+F&n+1] In(q j ) ] .  

It can be seen that this is identical in form to (2.11), the solution to the stream 
function for flow past multiple spheres. 

Finally, one wishes to determine the drag force exerted by the fluid on each 
submerged spheroid. In  this case, instead of using the integral relationship to 
determine Fi, a technique developed by Payne & Pel1 (1960) will be used. 
The above authors have shown that provided that the fluid a t  infinity is at 
rest the drag on a submerged object can be represented as follows: 

Fj = 8np lim ( r j  $/r; sin2 O j ) .  
TJ+ 00 

(5.11) 

If the fluid at  infinity is not at  rest (5.11) can easily be modified to represent the 

(5.12) drag force Fj = 87rp lim ( ~ ~ ( $ - $ ~ ) / r ; s i n ~ O ~ ) .  
r p m  
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For the case of prolate spheroids 
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r j  = c(cosh2 ti cos2q + sinh2 t j  sin2qj)i, 

and as 

1.e. 

r j +  co, r j +  c cosh &+ c$i, 

cosh&.;isinh[j for EB 1. 

Also 

and as 

i.e. rj/r!sin2Oj+ l/cehsin2qj for gj  9 1. 

r?sin2Bj = y2 = c2sinh2$,sin2qj, 

r j  + co, ri sin2 8, + c 2 e d  sin2qj, 

Using the fact that $m = 2c2UI2 (Po) 4 ( ~ 0 1 ,  

(5.12) reduces to $. = 8np lim ($ - $m)/c elj sin27 j .  (5.13) 

It has already been demonstrated that for large arguments the asymptotic 
behaviour of Gegenbauer functions of the second kind can be represented as 

c eb+m 

follows 
(5.14) 

Applying (5.14) and (5.7) to (5.13) it can be seen that the only multipole in (5.7) 
that contributes to the drag is the first one, 

Using (5.15) the following result for the drag on each object is obtained: 

Fj = ~ T , U D , ~ / C .  (5.16) 

Thus, as was the case for submerged spheres, the drag is determined by the 
intensity of the first-order multipole in the expression for the stream function. 
This intensity of course depends implicitly on the higher order multipoles as 
D Z j  is just one element of the set of matrix equations which are solved simul- 
taneously. By adopting similar techniques it can be shown that (5.16) appIies 
to the case of oblate spheroids as well as to prolate spheroids. 

In  order to be able to compare drag results for spheroids with the Stokes drag 
for a single sphere, the following argument is proposed. Consider a sphere 
having a radius equal to the axis dimension of the spheroid normal to the 
direction of flow. This would be represented by the minor axis of a prolate 
spheroid or the major axis of an oblate spheroid - in both cases represented by 
the symbol b in this study. The drag on a perfect sphere of radius b as represented 

(5.17) 
by Stokes formula would be 

= 6n,UUb. 

If, once again, hj  is used to represent the correction to the Stokes drag on a 

Fi = BnpUbh,. (5.18) 

single sphere in terms of the drag force on a spheroid, (5.17) can be modified to 
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Solving (5.18) and (5.16) simultaneously results in the following expression for hi 

A, = DZi/ 1.5 cb U. (5.19) 

6. Solutions for multiple prolate spheroids 
Creeping motion solutions for flow past two spheroids have been formulated 

by Wakiya (1965). Although these general solutions were formulated for any 
orientation of the spheroids they were not solved for the axisymmetric case and 
cannot therefore be used as a source of comparison for the results presented in 
this section. 

Before presenting solutions for flow past prolate spheroids some of the practical 
aspects of solving equations (5.8) will be discussed. The major numerical diffi- 
culty is that ill conditioning can occur in the matrix equation (2.14) if any of the 
pi arguments become large or if high order multipoles are required to satisfy the 
boundary conditions at many points on each generating arc, as the absolute 
values of Gegenbauer functions of the second kind H,(pj) become extremely 
small for large arguments as well as for high orders. When ill conditioning exists 
instead of using a direct matrix reduction technique one employs an iterative 
matrix reduction scheme (i.e. corrections to original solution computed from 
residual vectors) utilizing double precision arithmetic. A second dificulty which 
is not immediately obvious is associated with the generation of Gegenbauer and 
Legendre functions of the second kind using recurrence relationships of the form 

Q,(P) = ((2n-l)pQ,-l(p)-(n-l)Q,-~(P))/~ 

and 

Even the use of double precision arithmetic produces errors in HI, ( lo) ,  computed 
from the above of O(1016). Therefore, when the absolute value of either Qn(p) 
or Hn(p)  is less than the values of these functions should be calculated 
directly from their asymptotic behaviour rather than the above recurrence 
relationships. The asymptotic behaviour of these functions for p > 1 is given by 

Hn (P) = (Qn-2 (PI - Q, (P))/(2% - 1). 

Q, (p) = (n !/I .3.5.7.. . (2n + 1)) p-'+', 

Hn@) = ((n-2)!/1.3.5.7 ...( 2n- l))p-"+l. 

A third difficulty, discussed previously for multiple spheres, is that the equa- 
tions ( 5 . 8 ~ )  reduce to trivial form at q5 = 0, the point located vertically above the 
geometric centre of the spheroid. This uppermost point must again be represented 
by two points on the generating arc of each spheroid where the no-slip conditions 
are to be satisfied, and be chosen so that the equation for these two points 
converges to the solution for a single point. The results of these particular 
convergence trials will not be presented in detail. It is sufficient to state that in 
all cases examined the value of the angle q5 = k a in degrees required to produce 
convergence to five significant figures was equal in magnitude to the ratio of 
major to minor axis, a = a/b. 

In  order to show that (5.7) converges to the exact solution for the flow past a 
single prolate spheroid, solutions were obtained for two prolate spheroids having 
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a spacing to major axis ratio of 10 000. The boundary conditions were satisfied 
at the uppermost point on each generating arc only. These results, based on the 
two lowest order multipoles, are compared with the exact solutions of Happel 
& Brenner (1965) in table 4. All results in this section will be stated in terms of the 
drag correction factor A, defined by (5.19). 

Aspect ratio, a/b 

1.01 
1.10 
1.50 
2.00 
5.00 

10.00 
100-00 

TABLE 4. 

Spacing, d/a A, equation (5.7) A, Happel 85 Brenner 

10 000 1.002 1.002 
10 000 1.020 1.020 
10 000 1.102 1.102 
10 000 1.204 1.204 
10 000 1.785 1.785 
10 000 2.647 2.647 
10 000 13.895 13.895 

Comparison of drag results for ono prolate spheroid from (5.7) 
with exact results of Happel & Brenner (1965) 

y= 0 

-2 -1 0 1 2 
M= 1 

Y I' 

X 

-2 -1  0 1 2 -2 - 1  0 I 2 
M=5 

(4 
M=9 

---' - - - 0  

-4  - 3  -2 -1 0 1 2 3 4 -4 - 3  -2  -1 0 1 2 3 4 
M =  1 M = 3  

(b)  
FIGURE 9. Zero streamlines as a function of spheroid spacing and number of boundary 

points M for prolate spheroids. a/b = 2, (a) d/a = 1, ( 6 )  d/a = 3. 

Table 4 demonstrates that in the limit of one prolate spheroid, (5.7) agrees 
with the exact solution to four significant digits. We next examine the conver- 
gence characteristics of truncated multipole solutions for flow past two prolate 
spheroids at  various spacings where the boundary conditions are satisfied a t  
increasing numbers of points along the generating arc of each spheroid. The 
locations of these boundary points were chosen by dividing the 7 co-ordinate 
into equal parts. These results are presented in table 5. The streamlines have 
also been plotted in figure 9 for certain cases of pa.rticular interest. 

Table 5 indicates that convergence to five significant figures is rapidly 
attained in all cases - even when the spheroids are touching. Except for the 
case of two spheroids touching where seven points were required for five digit 
convergence, only five points on each object resulted in convergence to five 
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significant figures for all other spacings. It can be seen that the relative errors 
in A, are almost the same tw those for the two sphere problem. The distortions 
of the zero streamline for two touching spheroids (a/b = 2) and for two spheroids 
having a d/a ratio of three (see figure 9) are similar to the distortions in the 
case of two spheres but of smaller magnitude. This result is not unexpected 

Number of 
Aspect ratio, alb Spacing, d/a boundary points, M h 

2.0 1.0 1 0.8669 
0-8452 2.0 1.0 3 

2.0 1.0 5 0.8441 
0.8442 2.0 1.0 7 

2.0 1.0 9 0.8442 
2.0 2.0 1 0.9876 
2.0 2.0 3 0.9813 
2.0 2.0 5 0.9812 

2.0 3.0 1 1.0480 
2.0 3.0 3 1.0468 
2.0 3.0 5 1.0458 
2.0 4.0 1 1.0825 
2.0 4-0 3 1.0815 
2.0 4.0 5 1.0815 

2.0 8.0 1 1-1397 
2.0 8.0 3 1.1396 
2.0 8.0 5 1-1396 

2.0 16.0 1 1.1709 
2.0 16.0 3 1.1709 

5.0 1.0 1 1.4076 
5.0 1.0 3 1.3752 
5.0 1-0 5 1.3705 
5-0 1.0 7 1-3700 
5.0 1.0 9 1.3700 
5.0 1.0 11 1-3700 
5.0 2.0 1 1.5727 
5.0 2.0 3 1.5676 
5-0 2.0 5 1.5675 
5.0 2.0 7 1.5675 
5.0 2.0 9 1.5675 
5.0 3.0 1 1.6380 
5.0 3.0 3 1-6365 
5.0 3.0 5 1.6364 
5.0 3.0 7 1.6364 
5.0 4.0 1 1.6726 
5.0 4.0 3 1.6719 
5.0 4.0 5 1.6719 
5.0 8.0 1 1.7270 
5.0 8.0 3 1.7269 
5.0 8.0 5 1.7269 
5.0 16.0 1 1.7554 
5.0 16.0 3 1.7554 

TABLE 5. Convergence of drag results for two prolate spheroids 
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because, as the aspect ratio increases, the objects become extended in the flow 
direction and in the limit of infinite aspect ratio the boundaries will be parallel 
to the free-stream streamlines. 

Finally drag results for flow past chains consisting of from one to fifteen 
prolate spheroids have been plotted in figure 10. The spheroids considered for 
this case had an aspect ratio of five and a spacing parameter (d/a) of two. The 
drag correction factor A, for each spheroid in each chain has been plotted against 

Spheroid number ( j )  

of prolate spheroids with alb = 5.0, d/a = 2.0. 
FIGURE 10. Drag correction factor A, for chains containing different numbers 

the spheroid number j as was done in $ 4  for chains of spheres (see figure 4). 
The boundary conditions were satisfied at  only one point on each object indi- 
cating a probable maximum error of 0.6 % based on the two spheroid results. 

The solid curves have been drawn to show the change in drag between 
spheroids within one chain. Comparing these curves with the equivalent drag 
results for spheres in figure 4, it can be seen that for the case of prolate spheroids 
less shielding exists within any single chain than in an equivalent chain of 
spheres. The broken curves in figure 10 demonstrate the change in drag on the j th  
spheroid in a chain as more spheroids are added to the chain. These curves are 
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of greater slope than those for spheres (figure 4) once again indicating the 
weaker shielding characteristics exhibited by a chain of prolate spheroids. As 
the results in figure 10 were all obtained for Spheroids having a spacing parameter 
@/a) of 2 the drag on each spheroid in a seven spheroid chain is plotted in 
figure 11 for different particle spacings. Comparing these results with the 
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1.7 

1.6 
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- 

- 
- 

- 

- 

- 

r I I I I I I I I 

0.8 1 I I I I I I I I 
-3  -2  - 1  0 1 2 3  

Spheroid number ( j )  

FIUURE 11. Drag correction factor for a chain containing seven prolate spheroids 
at different spheroid spacings with a/b = 5-0. 

equivalent results for spheres in figure 5 one again observes the weaker shielding 
effects of prolate spheroids. This comparison also indicates that the interactions 
between prolate spheroids in a chain will approach zero at smaller values of the 
spacing parameter than can be expected in the case of spheres. 

7. Solutions for multiple oblate spheroids 
All the precautionary measures discussed in 3 6 to be adopted when applying 

(5.7) to the case of prolate spheroids apply when (6.7) is used to solve flow prob- 
lems past oblate spheroids. In addition, it must be kept in mind that for oblate 
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spheroids the co-ordinate axis pi is purely imaginary and therefore the 
Gegenbauer and Legendre functions of the second kind need to be determined 
using double precision complex arithmetic. 

Results for flow past a single oblate spheroid were obtained from (5.7) by 
considering two oblate spheroids having a spacing parameter (dla) of 10 000. The 
boundary conditions were satisfied at  the uppermost point on each generating 

A, exact 
Aspect ratio, a/b Spacing parameter, d/a A, equation (5.7) Happel & Brenner 

0.99 
0.90 
0.70 
0-50 
0.20 
0.10 
0.01 

10 000 
10 000 
10 000 
10 000 
10 000 
10 000 
10 000 

0.9980 
0.9801 
0-9415 
0.9053 
0.8615 
0.8525 
0.8489 

0.9980 
0.9801 
0.9415 
0.9053 
0.8615 
0.8525 
0.8489 

TABLE 6. Comparison of drag results for one oblate spheroid from (5.7) with 
exact solutions of Happel & Brenner (1965) 

m-" yfy+ f i- 
-kt--+-)- . . .  s k+ ..-ti )c -+ , - k -  x 

- 1  ---o'-' 1 - 
M =  1 M =  13 

++) - - - - - -  {+b -t- .Y 

\ l  p - 2  - I  0 P 2  -- - 1  0 l"2 
\ I  

I I 
\ I  

M=l  (b) M=I  

FIGURE 12. Zero streamlines as a function of spheroid spacing and number of 
boundary points M for oblate spheroids. alb = 0.5, (a) d/a = 1, (b) d/a = 3. 

arc and the results were compared with the exact solutions of Happel & Brenner 
(1965) in table 6. These results demonstrate that truncated solutions based on 
the lowest order multipoles agree to four significant digits with the exact, solu- 
tion for the limiting case of flow past a single oblate spheroid for all values of 
0.01 < a/b < 1.0. 

Results showing the convergence of the solution for flow past two oblate 
spheroids a,t various spacings where the boundary conditions were satisfied at  
increasing numbers of points along the generating arc of each spheroid are 
presented in table 7. Streamlines have been plotted in figure 12 for some cases 
of interest. The locations of points along the generating arc where the boundary 
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conditions are to be satisfied are determined by dividing the angle 7 iiito equal 
parts as was done for the case of prolate spheroids. Also from symmetry 

Table 7 indicates that as for the equivalent cases of flow past spheres and 
A, = A, = A. 

Aspect ratio, Spacing, Number of 
alb dla points, M h 
0.2 1 1 0.4829 
0.2 1 3 0.4672 
0.2 1 5 0.4699 
0.2 1 7 0.4696 
0.2 1 9 0.4697 
0.2 1 11 0-4697 
0.2 2 1 0-5146 
0.2 2 3 0.5007 
0.2 2 5 0.5015 
0.2 2 7 0.5015 
0.2 3 1 0.5410 
0.2 3 3 0.5293 
0.2 3 5 0.5295 
0.2 3 7 0.5295 
0.2 4 1 0.5644 
0.2 4 3 0-5548 
0.2 4 5 0.5548 
0.2 8 1 0.6394 
0.2 8 3 0.6351 
0.2 8 5 0.6351 
0.2 16 1 0-7217 
0.2 16 3 0.7207 
0.2 16 5 0.7207 
0.5 1 1 0-551 6 
0.5 1 3 0-5358 
0.5 1 5 0.5374 
0.5 1 7 0.5375 
0-5 1 9 0.5375 

0.5 2 1 0.6103 
0.5 2 3 0.6001 

0.6001 0.5 2 5 

0.5 3 1 0.6571 
0. Fi 3 3 0.6504 
0.5 3 5 0-6504 

0.5 4 1 0.6939 
0.5 4 3 0.6897 
0.5 4 5 0.6897 
0.5 8 1 0-7771 
0-5 8 3 0.7762 
0.5 8 5 0.7762 

0.5 16 1 0.8349 
0.8348 0.5 16 3 

0.5 16 5 0-8348 

TABLE 7. Convergence results for flow past two oblate spheroids 
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prolate spheroids convergence to five significant figures is rapidly attained 
with two oblate spheroids-even when they are touching-as the number of 
muItipoles is increased. It can be seen that convergence to five significant 
figures is achieved when the boundary conditions are satisfied at only five 
points on the generating arc of each spheroid, except for the case of two touching 
spheroids where nine points on each generating arc are required for convergence 
to four significant figures. By comparing the error in h shown in table 7 with 
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FIGURE 13. Drag correction factor A, for chains containing different numbers of 
oblate spheroids with alb = 0.2, dla = 2.0. 

the equivalent data for spheres and prolate spheroids it can be seen that these 
errors are approximately equal for touching objects in all three cases. However, 
as the object spacing increases, errors in h decrease most rapidly for prolate 
spheroids and least rapidly for oblate spheroids. Distortions of the zero stream- 
line for two touching oblate spheroids (a/b = 0-5) and for two spheroids having 
a dlaratio of three (figure 12) are greater than the equivalent distortions observed 
for either spheres or prolate spheroids (figures 3 and 9 respectively). This result 
is in agreement with the previous observation that streamline distortions are 
greater for spheres than for prolate spheroids when the boundary conditions 
are satisfied a t  only one point on the generating arc of each object, i.e. as the 
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1.0 

0.9 

0.8 

0.7 

0.6 

A, 

aspect ratio decreases, the objects become extended in a direction normal to 
the flow thereby requiring more terms in the series (or higher order multipoles) 
to describe their boundaries accurately. 

Drag results for flow past chains consisting of from one to fifteen oblate 
spheroids have been plotted in figure 13. These spheroids all have an aspect 
ratio of 0.2 and a spacing parameter (d/a) of two. As was done for chains of 
spheres (figure 4) and chains of prolate spheroids (figure 10) the drag correction 

I I I I I I I 

- 

dla - 
co 

- 

- 

- 

8 

factor hi for each oblate spheroid has been plotted against the spheroid number 
j in figure 13. The boundary conditions were satisfied at only the uppermost 
point on each spheroid. The percentage error to be expected can be deduced 
from table 7. 

The solid curves showing the change in drag between spheroids in any chain 
indicate a much stronger shielding effect in a chain of oblate spheroids than was 
observed for the cases of prolate spheroids or spheres. This assertion is imple- 
mented by the almost horizontal nature of the broken curves representing the 

47 F L M  50 
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change in drag on the j th  spheroid in a chain as more spheroids are added to 
the chain. The results presented in figure 13 were all obtained for spheroids 
having a spacing parameter (dla) of two and therefore the drag on each spheroid 
in a seven spheroid chain is plotted in figure 14 for different particle spacings. 
Comparing these results with the equivalent results for prolate spheroids 
(figure 11) and spheres (figure 5 )  indicates the stronger shielding effects of oblate 
spheroids. It can also be seen from the relatively slow approach of the hi curves 
to the value for a single oblate spheroid that the interactions between oblate 
spheroids in a chain will approach zero at  larger values of the spacing parameter 
than can be expected in either the case of chains of prolate spheroids or chains of 
spheres. 

8. Conclusions 
This paper is the first in a series of investigations whose overall objective is 

the development of a new technique for treating the slow viscous motion past 
finite assemblages of particles of arbitrary shape. The basic idea is that any 
object in a single or multiple flow configuration can be represented by discrete 
or continuous distributions of multi-lobular disturbances and approximate 
representations obtained by truncating these distributions. To illustrate the 
essential elements of the theory and to show the convergence of the solution 
procedure the present paper has been confined to a class of simple axially 
symmetric slow motions for the flow past finite line arrays of spheres or 
prolate or oblate spheroids. For these flows the boundaries for each object 
conform to a special natural co-ordinate system. The truncated series of multi- 
lobular disturbances representing each object have a common origin at the 
geometric centre of the object. The results indicate, a t  least for this simple 
class of flows, that the solution procedure converges more rapidly and is 
simpler to apply than the method of reflexions, since the solution technique is a 
single-step truncated matrix inversion rather than a series solution generated 
through an iterative process. Also, in contrast to the point-force approximation 
technique, solutions can be obtained to any desired degree of accuracy for all 
cases even when the objects are touching one another. 

Perhaps the most important advantage of the technique for future application 
is the relatively short amount of computer time required to obtain both flow 
field solutions and drag results. Some feeling for the rapidity of the calculation 
technique is gleaned from the fact that the 101 sphere problem described in 
figure 6 required about 10 see on an IBM 360-65, which is only a medium 
capacity present generation computer. This is several orders of magnitude 
faster than existing finite-difference techniques can handle the flow past only 
three closely spaced spheres. Also the number of grid points required to treat the 
finite-difference boundary-value problem for significantly larger numbers of 
objects would be prohibitive. 

The rapidity of the computational technique makes feasible the solution of 
two classes of problems for which no current satisfactory semi-analytic method 
exists, (a)  the slow flow past complex non-slender boundary shapes and (a) the 
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non-steady motion past small finite assemblages of closely spaced objects. In 
regard to (a) the multipole truncation technique is currently being generalized 
to treat complex axisymmetric objects, such as finite cylinders and cones, that 
do not possess simple natural co-ordinate systems. The multipole disturbances 
representing each object in this case do not have a common origin but are 
distributed along the axis of symmetry. In general, the arbitrary body of 
revolution can be constructed from a continuous distribution of spheroidal co- 
ordinate singularities corresponding to touching oblate spheroids of vanishing 
aspect ratio. The method for obtaining approximate solutions for an arbitrary 
body of revolution to any desired degree of accuracy using the multipole trun- 
cation technique is described in a second forthcoming paper, Gluckman, Pfeffer 
& Weinbaum (1971a). In  regard to (b )  the technique has been applied to the 
simple unsteady problem of three spheres of arbitrary spacing falling along their 
line of centres in a gravitational field, Gluckman, Pfeffer & Weinbaum (1971 b) .  
Finally, it  is hoped that the extension of this work to asymmetric flows;will 
result in a useful technique for modelling more varied three-dimensional creeping 
motion problems relative to finite assemblages of particles of arbitrary shape. 

M. J. Gluckman wishes to acknowledge the support and encouragement pro- 
vided by the St Regis Paper Company for the above work which has been 
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